So this is your second paradigm — inflation plus cold dark matter plus dark energy?
Yes. And it’s this amazing, glass-half-full, half-empty situation. The lambda-cold dark matter paradigm has these three pillars that are well established with evidence, and that allow us to describe the evolution of the universe from a tiny fraction of a second until today. But we know we’re not done.
For example, you say, “Wow, cosmic inflation sounds really important. It’s why we have a flat universe today and explains the seeds for galaxies. Tell me the details.” Well, we don’t know the details. Our best understanding is that inflation was caused by some still unknown field similar to the Higgs boson discovered in 2012.
Then you say, “Yeah, this dark matter sounds really important. Its gravity is responsible for the formation of all the galaxies and clusters in the universe. What is it?” We don’t know. It’s probably some kind of particle left over from the Big Bang, but we haven’t found it.
And then finally you say, “Oh, dark energy is 70 percent of the universe. That must be really important. Tell me more about it.” And we say, it’s consistent with a cosmological constant. But really, we don’t have a clue why the cosmological constant should exist or have the value it does.
So now cosmology has left us with three physics questions: Dark matter, dark energy and inflation — what are they?
Does that mean we need a third cosmological paradigm to find the answers?
Maybe. It could be that everything’s done in 30 years because we just flesh out our current ideas. We discover that dark matter really is some particle like the axion, that dark energy really is just the constant quantum energy of empty space, and that inflation really was caused by the Higgs field.
But more likely than not, if history is any guide, we’re missing something and there’s a surprise on the horizon.
Some cosmologists are trying to find this surprise by following the really big questions. For example: What was the Big Bang? And what happened beforehand? The Big Bang theory we talked about earlier is anything but a theory of the Big Bang itself; it’s a theory of what happened afterwards.
Remember, the actual Big Bang event, according to Einstein’s general relativity, was this singularity that saw the creation of matter, energy, space and time itself. That’s the big mystery, which we struggle even to talk about in scientific terms: Was there a phase before this singularity? And if so, what was it like? Or, as many theorists think, does the singularity in Einstein’s equations represent the instant when space and time themselves emerged from something more fundamental?
Another possibility that has captured the attention of scientists and public alike is the multiverse. This follows from inflation, where we imagine blowing up a small bit of space to an enormous size. Could that happen more than once, at different places and times? And the answer is yes: You could have had different patches of the wider multiverse inflating into entirely different universes, maybe with different laws of physics in each one. It could be the biggest idea since Copernicus moved us out of the center of the universe. But it’s also very frustrating because right now, it isn’t science: These universes would be completely disconnected, with no way to access them, observe them or show that they actually exist.
Yet another possibility is in the title of my Annual Reviews article: The road to precision cosmology. It used to be that cosmology was really difficult because the instruments weren’t quite up to the task. Back in the 1930s, Hubble and his colleague Milton Humason struggled for years to collect redshifts for a few hundred galaxies, in part because they were recording one spectrum at a time on photographic plates that collected less than 1 percent of the light. Now astronomers use electronic CCD detectors — the same kind that everyone carries around in their phone — that collect almost 100 percent of the light. It’s as if you increased your telescope size without any construction.
And we have projects like the Dark Energy Spectroscopic Instrument on Kitt Peak in Arizona that can collect the spectra of 5,000 galaxies at once — 35 million of them over five years.
So cosmology used to be a data-poor science in which it was hard to measure things within any reliable precision. And today, we are doing precision cosmology, with percent-level accuracy. And further, we are sometimes able to measure things in two different ways, and see if the results agree, creating cross-cuts that can confirm our current paradigm or reveal cracks in it.
A prime example of this is the expansion rate of the universe, what’s called the Hubble parameter — the most important number in cosmology. If nothing else, it tells us the age of the universe: The bigger the parameter, the younger the universe, and vice versa. Today we can measure it directly with the velocities and distances of galaxies out to a few hundred-million light years, at the few percent level.
But there is now another way to measure it with satellite observations of the microwave background radiation, which gives you the expansion rate when the universe was about 380,000 years old, at even greater precision. With the lambda-cold dark matter model you can extrapolate that expansion rate forward to the present day and see if you get the same number as you do with redshifts. And you don’t: The numbers differ by almost 10 percent — an ongoing puzzle that’s called the Hubble tension.
So maybe that’s the loose thread — the tiny discrepancy in the precision measurements that could lead to another paradigm shift. It could be just that the direct measurements of galaxy distances are wrong, or that the microwave background numbers are wrong. But maybe we are finding something that’s missing from lambda-cold dark matter. That would be extremely exciting.
10.1146/knowable-012423-1
M. Mitchell Waldrop is a freelance journalist based in Washington, DC. His previous stories for Knowable Magazine have covered topics such as green nuclear power, green concrete, recycling, the future of work, AI-generated deepfakes, ranked-choice voting and the perils of cash bail. His most recent book is Cosmic Origins: Science’s Long Quest to Understand How Our Universe Began (2022).
This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.