Each camera has a set of filters (29 for NIRCam and 10 for MIRI) tailored to specific sections of the infrared spectrum. Most images are composites of multiple filters. They also typically involve multiple exposures — in a process called dithering, the telescope’s frame is shifted slightly after each exposure, to cancel out the corrupting effect of cosmic ray strikes and others issues.
That way, Rieke says, “if there’s a bad pixel, it gets filled in with information from good pixels.” The separate images can then be aligned and combined into one crisp shot.
The telescope has a fixed field of view, so to portray a large swath of space it has to cover a single small patch at a time. For one broad survey of the sky, Rieke says, she’ll be using nine filters, each for nine exposures, across dozens of frames. That’s 81 exposures for a single frame, and roughly 7,000 for the entire composite. Again, not your average point-and-shoot.
Exposure Time
Astronomers must also decide how long to expose their images. A quick glance shows enormous differences in brightness between planets, stars, galaxies, and other objects, so Webb must be versatile enough to account for them all. NIRCam’s exposure time, for example, ranges from a few thousandths of a second to about 23 minutes. The Space Telescope Science Institute even offers an online exposure calculator, to help users estimate what will give the best result.
One special challenge is viewing dim objects located near brighter ones, like an exoplanet in the neighborhood of a brilliant star. For those scenarios, NIRCam comes equipped with a coronagraph, which is essentially a glass plate with a black dot to obscure the unwanted light.
“You get rid of the glare from the star itself, and you can study its close surroundings better,” Rieke says. “It’s just like putting your thumb up and blocking the sun.”
Another advantage of infrared imaging is that longer wavelengths shine through the fine dust that pervades many galaxies, providing a deeper look into space. But some of JWST’s most breathtaking pictures so far take that dust as their subject. A dreamlike image of the Carina Nebula’s cosmic cliffs shows previously invisible stellar nurseries — wisps and pillars of fine particles, contracting to form new stars.