Earth volcanoes vs. Mars volcanoes
How did Olympus Mons grow so big? Time.
Olympus Mons is a shield volcano, which means it oozes huge amounts of lava, rather than simply blowing its top in a catastrophic eruption. Earth’s biggest volcanoes are also shield volcanoes. This lets them grow slowly over time.
However, Earth’s plate tectonics also spread magma out, which keeps terrestrial volcanoes from indefinitely growing taller. Mars, on the other hand, is too small for plate tectonics.
Olympus Mons is some 3.5 billion years old, which means the volcano formed early on in Mars’ history. Astronomers suspect Olympus Mons could have stayed volcanically active for hundreds of millions of years. That’s far longer than any volcano on Earth could remain active.
Clues to Mars' climate history
In a Nature Communications paper published in 2017, astronomers studied a family of meteorites called nakhlites, which were all flung from Mars when an asteroid struck a volcano on the Red Planet some 11 million years ago.
The study showed that Mars’ volcanoes were seeping lava at a seriously slow pace: The volcano that formed the nakhlites grew 1,000 times slower than volcanoes do on Earth. The finding implies that Mars’ volcanoes last longer than scientists previously expected.
And in Olympus Mons’ case, the craters on its surface are also only around 200 million years old, which implies this volcano was active surprisingly recently, at least to a limited extent.
By studying Olympus Mons and other volcanoes on Mars, scientists can help unravel clues to the Red Planet's climate history, too. The meteorites born from the volcano actually show signs of minerals that form as water passes through rock, which suggests water was flowing on Mars as recently as 1.3 billion years ago. So, it turns out, the Red Planet’s era of running rivers and flowing lava might not have only been confined to the extremely distant past.