For new observers, the night sky appears to be a monochrome scene of black and white. Although astronomy books and websites are replete with objects revealing vivid reds, pinks, blues, and greens, gazing at most of these same objects with a small telescope shows none of that. Light from the deep sky appears mostly as shades of gray.
But those of us with more experience know the universe is a colorful place. It’s just that color in the universe requires intensity — enough photons to stimulate the cones in your eyes. These color receptors are an evolutionary response to humans spending most of our lives in daylight: When light is plentiful, its subtle differences in wavelength convey useful information, which we perceive as color. By contrast, while the eye’s rods are highly sensitive to light to help us see clearly in nocturnal environments, they don’t register color.
In the case of the Sun, its many photons at every wavelength saturate all our color receptors at once, making it appear white. And the Moon consists of dark basalts and gray dust and rock fragments — no color there unless there is an eclipse or its light is reddened by Earth’s atmosphere as it rises or sets. But looking elsewhere in the solar system, Mars, Uranus, and Neptune show us disks that are intensely red, green, and blue, respectively. And their shape and bright color are duplicated by one group of deep-sky objects: planetary nebulae.
Colorful targets
Planetary nebulae are the product of Sun-like stars shedding and then lighting up their outer layers late in life. Their blues, greens, and reds come from glowing gases such as hydrogen, helium, nitrogen, and oxygen.
Long before this was known, two 18th-century astronomers, Antoine Darquier de Pellepoix and William Herschel, both considered the shape of these nebulae planetlike. Herschel is widely credited with first calling them planetary nebulae, although there is no definitive answer as to whether the term truly originated with him.
Despite the name, only about 20 percent of planetary nebulae are spherical. The rest occur in a variety of shapes, resulting from the particular way each central dying star sloughs off its outer layers. Their density ranges from 100 to 10,000 times that of empty interstellar space. The more colorful nebulae, which appear on this list, tend to have higher densities and appear round or oval in a telescope. That’s because denser regions of gas glow more intensely.