Next up is the massive open cluster NGC 1850. In fact, astronomers classify this as a super star cluster, one that is brighter and more massive than normal open clusters, which also may eventually become a globular cluster. You’ll find NGC 1850 in the northeastern part of the LMC’s bar, with an apparent diameter of 3.4'. It’s so bright that it glows at magnitude 9.0.
Point an 8-inch scope at this cluster, and you’ll see roughly 50 stars glowing at magnitudes 13 and 14. The prominent clump of stars on NGC 1850’s western edge, NGC 1850A, actually makes this object a double cluster.
Our next object, NGC 1866, is another open cluster that lies in the northern reaches of the LMC. I think this object will amaze you through a 12-inch or larger telescope. It glows at magnitude 9.7 and spans 4.5'.
The easiest way to find it is to start at Beta Doradus and sweep 3.7° south-southwest. The brightest stars in this cluster glow at 15th magnitude, so you’ll need a large aperture to reveal them. Through a 14-inch scope with an eyepiece that yields a magnification of 300x or higher, you’ll see hundreds of stars.
Moving to the north central region of the LMC, you’ll come across yet another clump of four emission nebulae, but they’re packed even closer together than the previous group I described. Indeed, NGC 1962, NGC 1965, NGC 1966, and NGC 1970 fit into a region only 5' across.
Through an 8-inch telescope at low power, NGC 1962 will be the most apparent, although even it appears circular and featureless. Then crank up the magnification above 200x and examine the region north and east of NGC 1962. You’ll see the other three nebulae arcing along its rim.
Our next target is the other globular on this list, NGC 2019. It lies along the LMC’s bar just to the east of its center. It’s not bright, glowing at magnitude 10.9. It’s also pretty small, measuring a scant 1' in diameter. The reason you’ll see it, however, is because of its small, bright central region. NGC 2019 has a collapsed core — meaning its stars are unusually concentrated at its center — a phenomenon that’s happened in several other globular clusters in the Magellanic Clouds.
An 8-inch telescope will reveal the core easily. It actually appears lumpy rather than starlike. Crank the power past 200x, and you should be able to spot NGC 2019’s irregular outer boundary. If you can double your aperture to 16 inches, individual stars will appear.